Development and Optimization of a Multimodal Natural User Interface for Patients with **Severe Motor Disabilities**

Introduction and Motivation

- A quadriplegic is a person who is paralyzed from the neck down.
- Per the 2010 census, 250,000 Americans live with quadriplegia [1] Because of their disability, they can often feel socially isolated [4]
- Computers games help us communicate and connect while also having fun
- Quadriplegics, because of their disability, cannot use the computer in the conventional manner. [4]
- If a technology was developed to allow quadriplegics to play computer games, they may be relieved of some of their social isolation.

Problem Statement and Success Criteria

Keyboard Success Criteria

POV

<1.5x

<1.5x

<\$1000

10 mins.

POV

<1.5x

<1.5x

<\$500

Category

Functionality

discomfort)

Category

Cost

Functionality

Accuracy (error)

Time to Complete

discomfort)

Accuracy (error)

Time to Complete

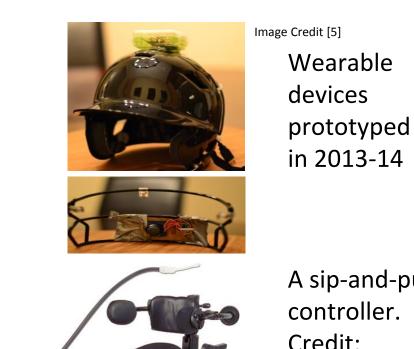
User Exp. (Mins. w/o

Mouse Success Criteria

User Exp. (Mins. w/o | 10 mins.

Problem Statement: Quadriplegics are not able to use the mouse or keyboard and hence cannot use the computer to play games.

User Constraint: C1—C3 quadriplegics cannot use muscles below their neck. Only facial gestures and eye movements work reliably


Game Design Constraints

	POV	Single-Point Input
Examples	Portal 2, Minecraft	Chess, Angry Birds
Required Keyboard Functionality	8 commands: W, A, S, D, SPACE, LEFT CLICK, RIGHT CLICK, MIDDLE MOUSE	Press/Movement, Press/No Movement No Press/Movement No Press/No Movement
Required Mouse Functionality	Pan Mouse	Move mouse directly to desire coordinates

Alternate Solutions

Devices on the market						
Market Survey						
Eyegaze Edge						
NoHands Mouse						
InfoScan TS Elite						
Jouse2						
TrackerPro						
Camora Mouso 2010						

The most commonly used devices today involve a sip-andpuff controller or a modified joystick as

Single-point input

8 commands 1 command

<1.5x

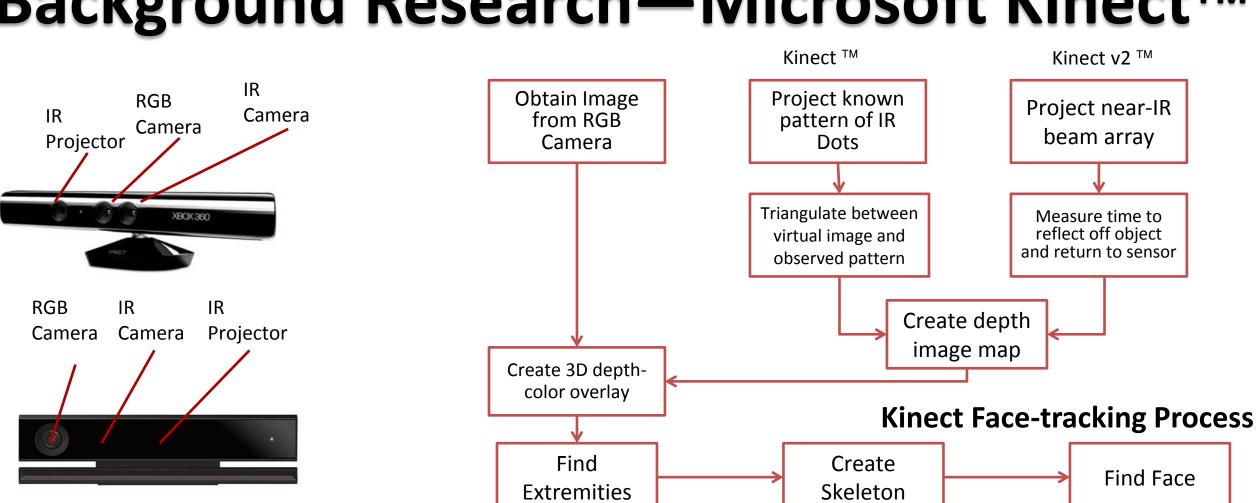
<1.5x

<\$1000

10 mins.

to desired

<1.5x

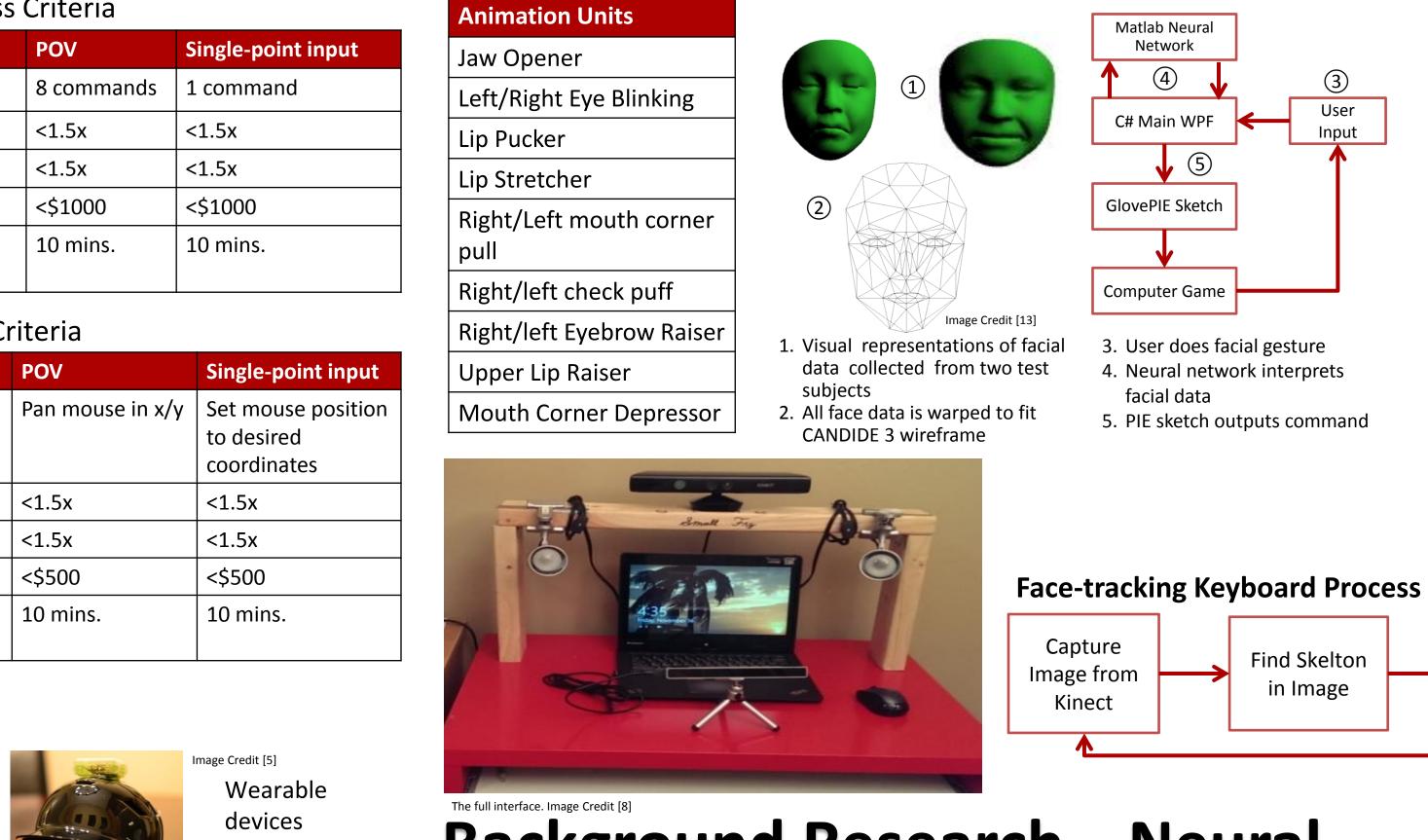

<1.5x

<\$500

10 mins.

coordinates

				•	A sip-and-puff			Image Credit [11]		17	9	
Jouse2			input for a onscreen k		controller.		Cell body	+40 Action potential	Task	Options	Chosen Solution	
TrackerPro			UNSCIECTIN	eyboard	Credit: Adaptive		Nucleus Axon hillock Axon	-55 Threshold initiations Resting state	Program	Java, C#, or MATLAB	MATLAB - Well- documented , easy to	,
Camera Mo	use 2010			4	Switch Laboratories		Presynaptic cell Myelin sheath Synaptic terminals Post	synaptic cell age Credit [10]	network		create neural networks and	
Alternat	ve Develop	ment Op	tions	Ima	ge Credit [6]	Notation		neural network is a simplified model of the found complex nervous systems			functions	
Туре	Sensors	Human interface	Physical mounting	Advantages	Disadvantages	• x_j^{ℓ} : Input to node j of layer ℓ • W_{ij}^{ℓ} : Weight from layer $\ell - 1$ node i to layer ℓ node j • $\sigma(x) = \frac{1}{1+e^{-x}}$: Sigmoid Transfer Function	 The accumulation of neuro modeled by the summatio weights 	otransmitters in the synaptic cleft is n of inputs multiplied by their respective	type of network	Function approx., clustering,	Classification - The network must decide which of 9	/
Wearable Device	MEMS Gyroscope	Head movement	Headphones, Cap, Helmet, Eye glass	Very reliable, lowest cost	User must wear device, C1 – C4 patients cannot do large head movements, Leads to user	 θ^ℓ_j : Bias of node j of layer ℓ O^ℓ_j : Output of node j in layer ℓ t_j : Target value of node j of the output layer 	 The threshold in the biolog modeled by the sigmoid tr an output layer node k ∈ K 	 Run the network forward with your input data to get the network output 		classification $0 - \infty$	expressions the user's face fits into 1 - For most	\$
	Potentiometer	Tongue movement	Helmet face mask	Very reliable, clean data, lowest cost	fatigue User must wear device, Leads to user fatigue	$\sigma(x) = \frac{1}{1 + e^{-x}}$ where $x = \frac{y}{1 + e^{-x}}$	$rac{\partial {m E}}{\partial W_{jk}}=\mathcal{O}_j\delta_k$ re $\delta_k=\mathcal{O}_k(1-\mathcal{O}_k)(\mathcal{O}_k-i)$	2. For each output node compute $\delta_k = \mathcal{O}_k(1 - \mathcal{O}_k)(\mathcal{O}_k - t_k)$ 3. For each hidden node calulate $\delta_j = \mathcal{O}_j(1 - \mathcal{O}_j) \sum \delta_k W_{jk}$	hidden layers		classification problems, 1 hidden layer is sufficient	
Natural User Interface	Microphone	Voice	On PC	User does not have to wear a device	Too slow for game play. Repetitive commands are cumbersome	$\xrightarrow{-5 -4 -3 -2 -1 0 1 2 3 4 5} x$ For Given a set of training data points t_k and output layer output \mathcal{O}_k	a hidden layer node $j \in J$ Image Credit [15] $\frac{\partial E}{\partial W_{ij}} = \mathcal{O}_i \delta_j$	 4. Update the weights and biases as follows Given 	neurons	Constructive or Pruning	MATLAB auto- integrates new	
	Kinect™– RGB + IR camera	Facial gestures	On PC	User does not have to wear a device, usable by C1-C6 patients	Lighting must be optimized	we can write the error as $E=rac{1}{2}\sum_{k\in \mathcal{K}}(\mathcal{O}_k-t_k)^2$		vlage			neurons, does not require modification of the performance error function.	
	Eye Tracking	Eyeball movements	On PC	User does not have to wear a device, usable by C1-C6 patients	Requires focus and limits user's field of view	Evo Tracking I	Dovolon	mont	Toct	Satu		
		-		ed. In 2014-15 a Natural	User Interface based	Eye-Tracking I	Develop	ment	iest	Setu	ib	
		·		prototyped and tested.	soft Kinect [™]	Image Credit [15]	Imperfect eye	mplications and Mitigation Noise and "jitteriness" –corrected hrough proper calibration	Keyboar w	rd Accuracy	Spacebar	N
	IR			Kinect ™	Kinect v2 ™	Gaze location detection accomplished by		Sudden jumps in detected gaze – reduced through user focus	D	Right Click	No Command	
IR	RGB IN Camera Camera		Obtain Im from RG Camera	BB pattern of		measuring the distance between the reflection IR light off the retina (1)	of EyeTracker™ Outp) gazeManager.gaze	Data.X (x-coordinate of gaze location)	The interface Inputs. A Image	Left Click	Middle Mouse	
	XBOX 360			✓ Triangulate bet virtual image observed patt	and reflect off object	Eyetribe [™] Field of View. Image Credit [14] Point of View games using EyeTrack	ker™ Point and Se	Data.Y (y-coordinate of gaze location) elect games using EyeTracker™	Credit [13] Each co correctl	ly sensed com	red 30 times, amount of nmands is compared to	
RGB IR Camera Ca	IR mera Projector		Create 3D d		Create depth image map	POV games only re the mouse to mov general direction, such they allow fo much greater mar	ve in a as or a	Point and Select games are very location dependent and have small margins of error.		rd Speed	y sensed commands	
			color over	· ·	Kinect Face-tracking Process	error and are less		This makes them more				


Kinect™ sensor array. Image Credit [7]

Kinect[™] and Kinect v2[™] Attributes


KIIIECL		Allibule	Allibules							
Model	Color Camera res.	Depth Camera res.	Depth Sense method	Min. Depth Distance	Vertical Field of View	Cost				
Kinect™	640x480	320x240	Spread Dots	40cm	43°	\$299				
Kinect v2™	1920x1080	512x424	TOF	50cm – 10cm	60°	\$199				
-						-				

Face-Tracking Development

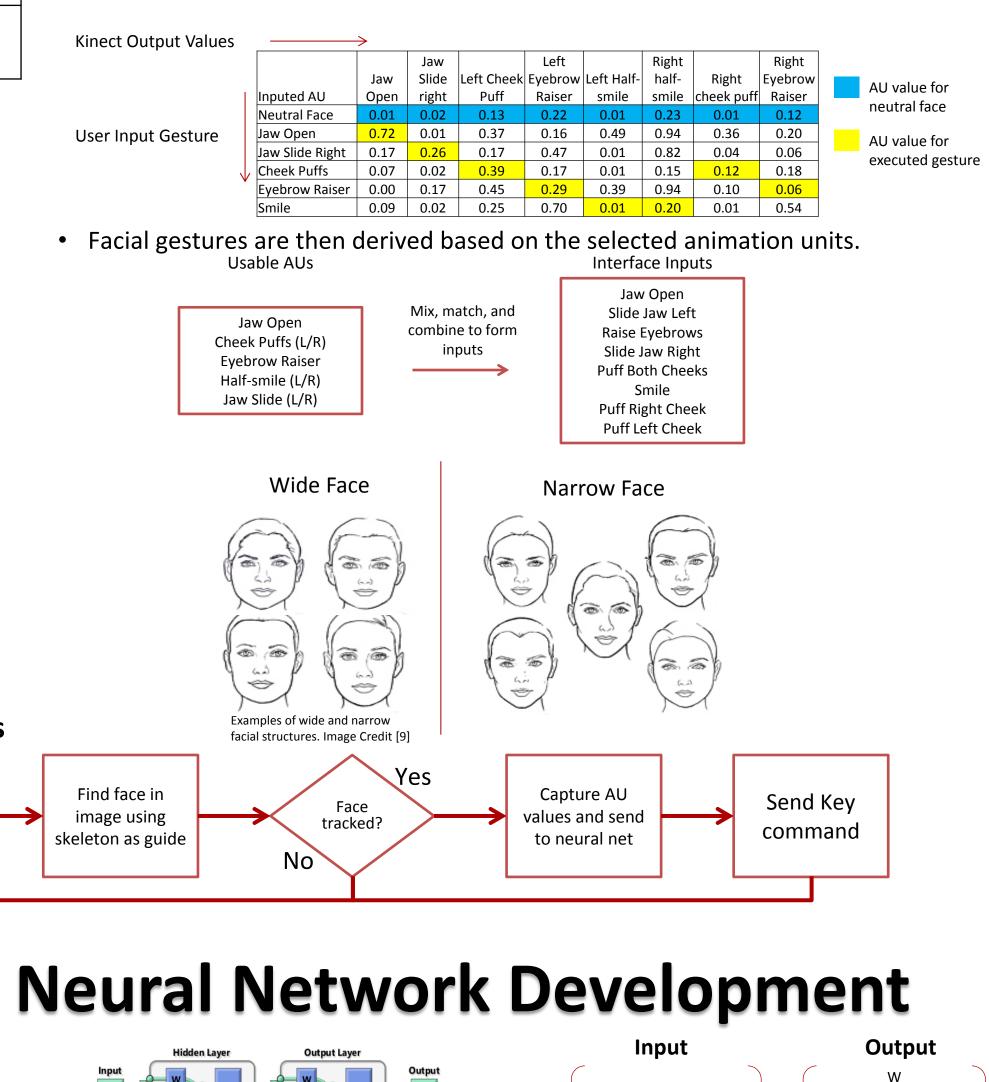
Task	Options	Chosen Solution
Choose facial data to collect	Raw Facial Data (1000 points), CANDIDE 3 Animation Units	CANDIDE 3 Animation Units-pre- processed data allows for high degree of accuracy
Process facial data	Hardcode expected values, use machine learning	Machine learning - Device will trainable and customizable
Send key cmds to game	C# SendKeys libraries, PIE sketch	PIE sketch - SendKeys is not compatible with games using DirectX protocol

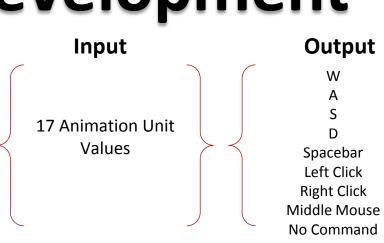
Background Research—Neural Networks

and and are less affected by error sources

Left and Up	Up	Right and Up
Left	Do Nothing	Right
Left and Down	Down	Right and Down

The screen is divided into 9 zones. If gaze in a zone, the mouse moves in the corresponding direction

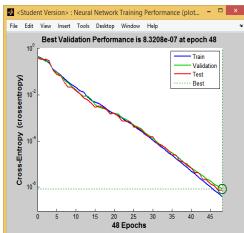

affected by error sources

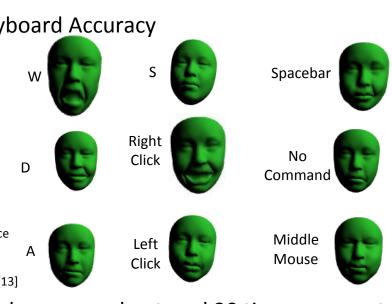

An example of a Point-and Select game. Image Credit [16a]

For Point and Select games, the mouse coordinates are set directly to the gaze location. mouseX = gazeManager.gazeData.X; mouseY = gazeManager.gazeData.Y;

Two-step process to find the best animation units (AUs) for the person's facial structure

- 1. Eliminate AUs which the user physically cannot execute
- Ex. Woman with a narrow face—9 AUs eliminated 2. Compare AU values when executing gesture to neutral face, prefer large value changes. Ex. Comparing "Jaw Open" AU value when jaw is open vs. closed




Integrating Matlab Neural Network with C# WPF code

//initialize matlab

matlab = new MLApp.MLApp(); //Put data into the matlab workspace matlab.PutWorkspaceData("input", "base", inputarray); //execute the NN function nn, return result in a string. result = (matlab.Execute("kinectv2NN(transpose(input))") /parse the 'result' string to get the command.

Neural net training with 180 samples 70% used for training, 15% for testing, and 15% for validation

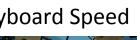


Image Credit [16b]

Time required to play through first 5 levels of Portal 2 using face-tracking keyboard and tactile mouse

Mouse Accuracy 1 6 7 8 11 16 (B) (H) (B) (S) (S) (D) 30 29 13 76 12 18 23 24 23 4 27 (19)

(9) (2) (2) (2) (2) (2) (2) (2) Image Credit [17]

Matrix of randomly plotted points. User must click points rapidly in order. Time and distance from target to click location is recorded Mouse Speed

Test subject must use device to look at 4 targets, 30 times in a random order. The total time required to look at all 30 targets is recorded

D)ata						utput Values ut Gesture	\rightarrow		r neutral face r executed gesture		nber of command entered out of 30 ds	
Subject		Discov	ery Anima	ation Unit E)ata*					Keyboard Accuracy**			
Boy Wide	Inputed AU	Jaw Open	Jaw Slide Right	Left Cheek Puff	Left Eyebrow Raiser	Lip Corner Puller Left	Lip Corner Puller Right	Lip Pucker	Right Eyebrow Lowerer	Command ID	Kinect™	Command ID	Kinect [⊤]
Face	Neutral Face	0.00	0.16	0.05	0.61	0.11	0.18	0.29	0.27	1	30	5	30
	Jaw Slide Right	0.02	0.34	0.02	0.56	0.02	0.05	0.49	0.14	2	20	C	
	Cheek Puff	0.00	0.21	0.44	0.56	0.01	0.67	0.64	0.19	2	30	6	30
	Jaw Open	0.71	0.12	0.09	0.59	0.12	0.19	0.54	0.49	3*	-	7	30
	Eyebrow Raiser*	0.00	0.05	0.02	0.32	0.03	0.03	0.28	0.19		20	0	20
	Smile	0.00	0.03	0.05	0.47	0.69	0.91	0.00	0.33	4	30	8	30
	Lip Pucker	0.15	0.28	0.04	0.62	0.00	0.16	0.78	0.20				
Woman					Left				Right				
Narrow			Jaw Slide	e Left Chee		Left Half-	Right Half-	Right Cheek		Commond ID	Kin e et TM	Commond ID	1/in a at
ace	Inputed AU	Jaw Open	Right	Puff	Lowerer	Smile	Smile	Puff	Lowerer	Command ID	Kinect™	Command ID	Kinect
ucc	Neutral Face	0.00	0.00	0.01	0.26	0.01	0.01	0.00	0.37	1	30	5	30
	Jaw Open	0.48	0.15	0.18	0.14	0.15	0.41	0.20	0.21	2*		C	27
	Cheek Puffs	0.01	0.02	0.10	0.65	0.10	0.21	0.03	0.55	2*	_	6	27
	Eyebrow Raiser	0.01	0.06	0.03	0.44	0.02	0.06	0.02	0.38	3	30	7	28
	Smile	0.00	0.04	0.02	0.34	0.70	0.92	0.01	0.39		20		
	Jaw Slide Right*	0.06	0.43	0.01	0.13	0.04	0.25	0.02	0.33	4	30	8	28
	sur side light	0.00	0.13	0.01	0.13	0.01	0.23	0.02	0.33				
Boy Narrow Face	Inputed AU	Jaw Open	Jaw Slide Right	e Left Cheel Puff	Left Eyebrow Raiser	Left Half- smile	Right half- smile	Right cheek puff	Right Eyebrow Raiser	Command ID	Kinect™	Command ID	
	Neutral Face	0.08	0.03	0.18	0.14	0.02	0.07	0.02	0.36	1	30	5	30
	Jaw Open	0.75	0.05	0.11	0.11	0.02	0.30	0.02	0.40	2	30	6	30
	Jaw Slide Right	0.22	0.11	0.19	0.15	0.02	0.11	0.04	0.29				
	Cheek Puff	0.00	0.03	0.63	0.08	0.01	0.07	0.40	0.20	3	30	7	30
	Eyebrow Lowerer	0.07	0.06	0.03	0.23	0.05	0.03	0.02	0.05	4	30	8	30
	Smile	0.16	0.11	0.36	0.25	0.97	0.99	0.05	0.41			-	
Man			Jaw Slide	Left Cheek	Left Eyebrow	Left Half-	Dight half		Right cheek				
Wide	Inputed AU	Jaw Open I		Puff	Raiser	smile	Right half- smile	Lip Pucker	puff				
Face	Neutral Face	0.00	0.13	0.31	0.31	0.09	0.14	0.19	0.13	Command ID	Kinect™	Command ID	Kinect
ale	Jaw Open	0.74	0.15	0.30	0.16	0.02	0.10	0.27	0.31				
	Jaw Slide right	0.30	0.35	0.10	0.37	0.01	0.47	0.53	0.10	1	30	5	30
	Left Cheek Puff*	0.01	0.36	0.45	0.16	0.00	0.75	0.81	0.05	2	30	6*	_
	Left Eyebrow Raiser		0.08	0.03	0.61	0.01	0.01	0.43	0.03				
	Left Half-smile	0.15	0.15	0.09	0.23	0.20	0.01	0.06	0.03	3	30	7	30
	Right half-smile	0.00	0.23	0.09	0.38	0.19	0.97	0.10	0.02	4	30	8	30
	Lip Pucker Right cheek puff*	0.06	0.18	0.04	0.25	0.23	0.44	0.22	0.02		50	0	

Eve-tracker[™] average erro pixels (Point and Select gar

Conclusions

- of the device
- adequate for game playing

Implications

- the internet and driving a car command

Future Research

- move different facial muscles.
- Addition of more commands
- Explore implementation of next-command prediction

References (abridged) [6] A sip-and-puff controller—Adaptive Switch Laboratories [1] Brault, Matthew W. Americans with Disabilities: 2010. Census Report. U.S. Census Bureau. [7] Kinect [™] and Kinectv2 [™] sensors—images created by Microsoft Washington D.C.: U.S. Department of Commerce: Economics and Statistics Administration. 2012. [8] Full interface with Kinect[™] and Evetribe Tracker[™]—photo taken by student [9] 9 facial structures—kpophairstyles.tumblr.com Document. 22 September 2014. [2] Cohn, Jeffrey F., et al. "Automated Face Analysis by Feature Point Tracking has high [10] Diagram of a Neuron--biomedicalengineering.yolasite.com Concurrent Validity with Manual FACS Coding." Psychophysiology 36 (1999): 35-42. Print. August [11] Neuron Action potential graph—wikipedia commons [12]Neural Network Diagram, equation, notation, graph, and derivision—Ryan Harris [3] Jacob, Robert J.K. "Eye Movement-Based Human-Computer Interaction Techniques: Toward [13] CANDIDE3 wire mesh and animated facial models—courtesy of Microsoft

2014. Non-Command Interfaces." (n.d.): 1-58. Print. September 2014. -. "Eye Tracking in Advanced Interface Design." (n.d.): 1-54. Print. August 2014. Karray, Fakhreddine, et al. "Human-Computer Interaction: Overview on the State of the Art." [16] Images courtesy of (a)Unbalance, (b)Valve, and (c)Mojang International Journal on Smart Sensing and Intelligent Systems 1.1 (2008): 137-158. Print. August[17] Image created by student 2014.

[4] Myers, Brad A. "A Brief History of Human Computer Interaction Technology." ACM interaction 5.2 (1998): 44-54 Streets, Graham. Quadriplegia - A View from the Chair. n.d. Web. 22 September 2014. <http://www.streetsie.com/quadriplegia/>. Image Credits (in order of appearance):

0.06	0.02	0.06	0.40 0.01	0.60 0.41				
~		Eye-track	er™ Mouse Spe	eed	Kinect ™ Face-Tracker Speed			
r = 3			Seconds Per	Seconds Per	Level	Time (Face-Tracker)	Time (Total)	
mes)			Command Eye-	Command	1	75.38	103.86	
•		Commands	tracker™	Tactile Mouse	2	98.96	102.35	
					3	114.6	103.81	
		30	2.8	1.4	4	154.59	134.23	
					5	136.06	114.5	

• Technology to enable quadriplegics to play computer games **must rely on muscles above the neck** • A large number of popular games can be classified as follows:

579.59[†]

Total

114.5 558.75⁺

• **Point of View**—8 keyboard commands and a mouse to pan the view

• **Single input**– Mouse to move to a specific point and a singe command to select

• Devices on the market **do not** meet the **functionality**, **usability**, and **cost** needs of the demographic • A **natural user interface** that can recognize facial gestures and track eye movement can be developed using **commercially available technology**

• A **successful** keyboard prototype was developed using Kinectv2 [™]

• Select animation units provided by vision processing application were input to a trained neural network to identify the command to send to the game

• The system met the speed criteria and accuracy requirements

• Selecting the appropriate animation units for the user's facial structure is crucial to the success

A **successful** mouse emulator was developed using an eye tracking device

• The device was usable for both view panning and point and select applications • The accuracy of the mouse emulator was worse than a regular tactile mouse – but was

• The speed of the mouse emulator was **close** to that of the tactile mouse

Neural networks enabled recognition of different variations of the same facial gesture and hence better predict user intent. It also allows easy **customization** for a specific user

• Everyday actions can be classified as Unimodal or Multimodal

• Unimodal: Turning on lights and changing television channels

• Multimodal: Driving a car (steering and gas/brake pedal) and using the computer

• Most accessibility research has gone into the creation of unimodal systems.

• However, our most important actions require multiple input channels

• The prototyped interface can be expanded to applications outside of gaming, including surfing

• At its core, the interface recognizes facial gestures and eye movements and outputs them as

Exploration of new device customization options

• Facial structure and user ability determine which Animation Units can be easily recognized • For example, cheek puffing in a round face is hard to recognize and users differ in their ability to

• Kinect [™] provides raw 3D coordinates on 1000 facial points, but only 17 Animation Units. • Explore possibility of using raw data to enable more commands

[14] EyeTribe[™] Tracking box—courtesy of the EyeTribe [™] [15]eyeball clipart—clipartpanda.com

[5] Head-tracking Gyroscope and face-tracking mouse—photo taken by student