
LAGRANGE REMAINDER OR ERROR BOUND 
 
 
Like alternating series, there is a way to tell how accurately your Taylor polynomial approximates the actual 
function value:  you use something called the Lagrange remainder or Lagrange error bound. 
 
Lagrange Remainder:  If you use a Taylor polynomial of degree n centered about c to approximate the value 
x, then the actual function value falls within the error bound 
 

  Rn(x)  =  
f(n+1) (z) (x – c)n+1

(n + 1)!     ,   where z is some number between x and c. 

 
Translation:  Similar to alternating series, the error bound is given by the next term in the series, n + 1.  the only 
tricky part is that you evaluate  f(n+1) , the (n + 1)th derivative, at z, not c.  z is the number that makes  f(n+1)(z) 
as large as it can be.  This error bound is supposed to tell you how far off you are from the real number, so we 
want to assume the worst.  We want the error bound to represent the largest possible error.  In practice, picking 
z is pretty easy. 
 
Example 1: 
 
Approximate  cos (.1)  using a fourth-degree Maclaurin polynomial, and find the associated Lagrange 
remainder (error bound). 
 
Solution: 

Since the 4th degree Taylor polynomial for  cos x = 1 – 
x2

2!  + 
x4

4!  , then  

                                                                       cos (.1) ≈  1 – 
(.1)2

2!   + 
(.1)4

4!    ≈   .99500416667   

 
Now, the associated Lagrange remainder after n = 4 (denoted  R4(x)) is 
 

 R4(x)  =  
f(5)(z) (x – c)5

5!     . 

 
The fifth derivative of cos x is –sin z.  Now, plug in x = .1 and c = 0 to get 
 

 R4(.1)  =  
(– sin z)(.1)5

5!    . 

 
We need – sin z  to be as large as possible.  The largest value of  – sin z  is 1.  By assuming   
– sin z is the largest possible value, we are creating the largest possible error; so, plug in  1  for  
– sin z.  The actual remainder will be less that this largest possible value. 
 

 R4 (.1)  <  
(1) (.1)5

5!    =  
.15

5!    =     .0000000833    

 
Therefore, our approximation of  .99500416667  is off by less than  .0000000833. 



Example 2: 

(a)  Determine the degree of the Maclaurin polynomial that should be used to approximate  
3

e   to four decimal 

places.  (b)  Use this Maclaurin polynomial to estimate   
3

e    to four decimal places. 
 
Solution: 

(a)   f(x)  =  ex      The nth degree Maclaurin polynomial is  Pn(x)  =  1 + x + 
x2

2!  + 
x3

3!  + 
x4

4!  + . . . + 
xn

n!   

The Lagrange form of the remainder with x = 
1
3  





since   
3

e  =  e1/3    is 

 Rn


1

3    =  
f(n+1)(z) 



1

3
n+1

(n + 1)!     where  0 < z < 
1
3  

 
Since  f(n) (x) = ex  for all derivatives of f(x) = ex, we have 
  

 



Rn



1

3    <   
e1/3

(n + 1)! 


1

3  n+1 

 

 



Rn



1

3    <   
e1/3

(n + 1)! 3n+1  

 
but since  e < 27,  then  e1/3 < 3 and we have: 
 

 



Rn



1

3    <   
3

(n + 1)! 3n+1  

 

 



Rn



1

3    <   
1

(n + 1)! 3n  (the Lagrange  error bound) 

Since we are seeking  
3

e   with four decimal accuracy, we need 



Rn



1

3    to be less than  0.00005. 

So,  



Rn



1

3    <   0.00005  when   
1

(n + 1)! 3n   <  0.00005 

 

By trial and error using a calculator, this is true when n = 5  since  
1

(5 + 1)! 35   ≈ .000006 < .00005 

 

Therefore, we use  P5


1

3    as an approximated value of  
3

e   accurate to 4 decimal places.  

 

(b) Then  P5(x)  =  1 + x + 
x2

2!  + 
x3

3!  + 
x4

4!  + 
x5

5!  

 

 So     P5


1

3    =  1 + 


1

3   + 
(1/3)2

2!   + 
(1/3)3

3!   + 
(1/3)4

4!   + 
(1/3)5

5!     =   
5087
3645    ≈   1.39561 

 

  Therefore,  
3

e  ≈  1.3956  accurate to 4 decimal places.    


