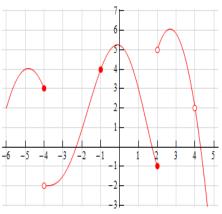
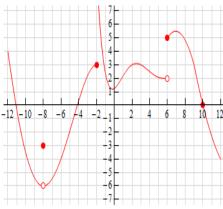
t in order for a function to be continuous at x=a both f(a) and $\lim_{x \to a} f(x)$ must exist and we must have,

$$\lim_{x\to a}f\left(x\right) =f\left(a\right)$$

Recall that:

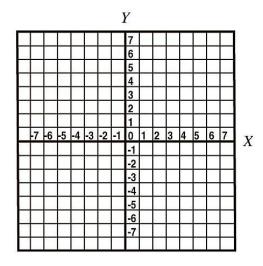

Given a function f(x) 11,

$$\lim_{x \to \sigma^{+}} f(x) = \lim_{x \to \sigma^{-}} f(x) = L$$

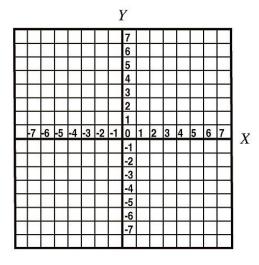

then the normal limit will exist and

$$\lim_{x \to a} f(x) = L$$

1. The graph of f(x) is given below. Based on this graph determine where the function is discontinuous.


2. The graph of f(x) is given below. Based on this graph determine where the function is discontinuous.

.. . . .


Graph the following piecewise function. Determine if the function is continuous or discontinuous at the indicated points 3.

$$g\left(x
ight)=\left\{egin{array}{ll} 2x & x<6 \ x-1 & x\geq 6 \end{array}
ight.$$
 (a) $x=4$ (b) $x=6$

4.

$$h\left(t
ight)=\left\{egin{array}{ll} t^2 & t<-2\ t+6 & t\geq-2 \end{array}
ight.$$
 (a) $t=-2$ (b) $t=10$

