
Kepler’s 3rd Law Derivation 
 
Kepler never did this derivation.  He jumped straight to the result in 1609 by pouring over 
astronomical data.  At the time of Kepler, Calculus didn’t exist.  Newton invented Calculus 
largely using astronomically known quantities and used Calculus to prove Kepler’s 
equation.  This derivation utilizes the Lagrangian to simplify Newton’s proof. 
 
Part 1. 
 
Velocity squared in polar coordinates: 𝑣2 = �̇�2 + 𝑟2�̇�2 
 
�̇�2 is the velocity-squared component inward, while 𝑟2�̇�2 is the velocity-square component 
along the direction of motion. 
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Part 2.  
 

𝐿 = 𝑇 − 𝑈 
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For an object in orbit, the angular momentum doesn’t change as the object moves 
throughout its orbit: 
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Potential energy only depends on radial distance from the source, so 𝜕𝑈

𝜕�̇�
= 0. 
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Since 𝑑

𝑑𝑡

𝜕𝐿

𝜕�̇�
= 0, (𝑚𝑟2�̇�) is constant. 

 
𝒎𝒓𝟐�̇� ≡ 𝒍 

 
𝑙 is an arbitrary constant used to define a very useful quantity for future steps.  𝑙 = 𝑚𝑟2�̇� 
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The following is a useful upcoming substitution: 
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Part 3.  
 

𝐸 = 𝑇 + 𝑈 
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Make that same substitution in the numerator: 
 

𝜃 = ∫ ±
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Part 4. 
 

𝐹 =
𝐺𝑚1𝑚2

𝑟2
 

 

𝑈 = ∫ 𝐹 ∙ 𝑑𝑟 = ∫
𝐺𝑚1𝑚2

𝑟2
= −

𝐺𝑚1𝑚2

𝑟
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   ,   𝑘 ≡ 𝐺𝑚1𝑚2 
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Use u-substitution with 𝑢 ≡

𝑙

𝑟
: 

 

𝜃 = ∫
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Use integral tables and many steps… 
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Create two definitions: 
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Part 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The geometry of a conic section: 
 

𝑟 =
𝜀𝑑

1 + cos 𝜃
 

 
This becomes an ellipse if 0 < 𝜀 < 1. 
 
If, 𝛼 ≡ 𝜀𝑑, the orbital motion equations for a central force are ellipses!!! 
 
The derivation for the motion of an orbit with a central force happens to give an ellipse. 
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Part 6.  
 

𝑎 ≡ 𝑠𝑒𝑚𝑖𝑚𝑎𝑗𝑜𝑟 𝑎𝑥𝑖𝑠 
 

𝑏 ≡ 𝑠𝑒𝑚𝑖𝑚𝑖𝑛𝑜𝑟 𝑎𝑥𝑖𝑠 
 
From geometry: 
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Part 7. 
 
From Kepler’s 2nd Law: 
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Remember, 𝑟2�̇� =
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𝑚
  so, 1
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Area of an ellipse = 𝜋𝑎𝑏 
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𝑘 ≡ 𝐺𝑚1𝑚2 

 

𝑻𝟐 =
𝟒𝝅𝟐𝒂𝟑

𝑮𝒎
 


