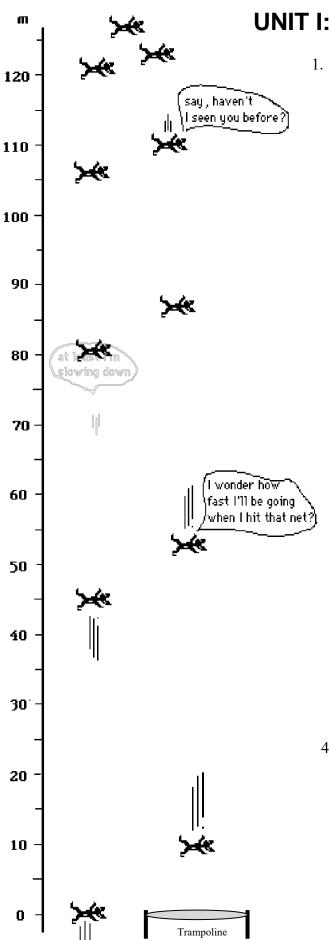
## **UNIT I: Worksheet 4** 1. Finn is shot upward from a cannon with $v_0 = 50$ m/s. For e iı


| each second, record the displacement. Then determine the instantaneous velocity at each second. |      |      |                      |   |  |
|-------------------------------------------------------------------------------------------------|------|------|----------------------|---|--|
|                                                                                                 | t(s) | y(m) | v <sub>y</sub> (m/s) | ] |  |

| t(s) | y(m) | v <sub>y</sub> (m/s) |
|------|------|----------------------|
| 0    |      |                      |
| 1    |      |                      |
| 2    |      |                      |
| 3    |      |                      |
| 4    |      |                      |
| 5    |      |                      |
| 6    |      |                      |
| 7    |      |                      |
| 8    |      |                      |
| 9    |      |                      |
| 10   |      |                      |

2. Draw velocity and acceleration vectors on each picture of Finn.

3. Sketch a velocity vs. time graph below for Finn's flight.

- 4a. What is Finn's velocity at the top of his path?
  - b. What is Finn's acceleration at the top of his path?
  - c. What is Finn's displacement for half of the trip?
  - d. What is Finn's displacement for the entire trip?



Name