
Date \_\_\_\_\_\_ Pd\_\_\_\_

## **UNIT II: Worksheet 1**

In each of the following situations, represent the object with a particle. Sketch all the forces acting upon the object, making the length of each vector represent the magnitude of the force.

| Object slides at constant speed without friction.        | 2. Object slows due to kinetic friction.          |
|----------------------------------------------------------|---------------------------------------------------|
|                                                          |                                                   |
| 3. Object slides without friction.                       | 4. Static friction prevents sliding.              |
|                                                          |                                                   |
| 5. An object is suspended from the ceiling.              | 6. The object is motionless.                      |
|                                                          |                                                   |
| 7. The object is motionless.                             | 8. The object is pulled upward at constant speed. |
|                                                          | F F                                               |
| 9. The object is pulled by a force at an angle to the    | 10. The object is pushed by a force applied       |
| surface.                                                 | downward at an angle.  F  θ .                     |
| 11. The object is falling at constant (terminal) velocit | 12. The ball is rising in a parabolic trajectory. |
|                                                          | -(- f (m)                                         |

13. Determine the x and y components of each of the force vectors below. Show work.



14.

A person pulls on a 50 kg desk with a 200N force acting at 30° angle above the horizontal. The desk does not budge. Draw a force diagram for the desk.

- a. Write the equation that describes the forces that act in the x-direction.
- b. Write the equation that describes the forces which act in the y-direction.
- c. Determine the x and y components of the force of tension.
- d. Solve for the value of the frictional force. Do the same for the normal force.